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A new kinetic orientation model for the description of the rheo-optical behaviour of polymer melts is 
presented. According to this model, constraints to deformation are introduced by specific changes in Gibbs 
free energy. The applicability of the model is demonstrated by using it to calculate the transient birefringence 
in model fluids occurring upon simple elongation with constant stretch rate and constant derivative of the 
Hencky strain. For both deformation histories, small and large strain rates are considered. 
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I N T R O D U C T I O N  There is experimental s and theoretical 9'1° evidence 

It is often claimed that the streaming birefringence of that a polymer melt may not have a constant stress- 
polymer melts is directly proportional to the appropriate optical coefficient. Within the conceptual framework of 
stress difference, if the stresses are below 1 MPa a'/. a simple fluid with fading memory, it has been shown 9 

The constancy of the stress-optical coefficient, under that a simple linear relationship between the deviators 
equilibrium conditions, for small extensions of crosslinked of the stress and the refractive-index tensor can only be 
rubbers (Gaussian networks)is derived from the statistical expected to hold for very slow motion, i.e. in the 

'Newtonian' flow region. segment model 3'4 according to which the tensile stress 
This paper presents a microscopic model that describes 

during simple elongation is given by: the kinetics of orientation in polymer melts in which 
a = NkT(22  - 2 - 1 )  (1) constraints on deformation are introduced by differences 

and the simultaneously occurring birefringence by: in Gibbs free energy. It should be emphasized that this 
model does not contain any of the assumptions 

An=(2n/45)[(nZo+2)2/no]N(~sl -~S2)(2z- -2  -1)  (2) mentioned above, and it is also not assumed that the 

where N is the number of chains between crosslinks per deformation obeys an affine mechanism. To demonstrate 
unit volume, k the Boltzmann constant, T the absolute the applicability of the model, it will be used to describe 
temperature, 2 the extension ratio, no the refractive the transient birefringence An(t) that occurs in model 

fluids upon simple elongation at constant stretch rate 
index of the undeformed material, and (asx-as2) the 2o=d2 /d t=cons t an t  and at constant derivative of 
polarizability anisotropy of one segment. Combining 

the Hencky strain ~o=d(ln2)/dt=constant ;  for both equations (1) and (2) gives the stress-optical coefficient 
deformation histories, small and large strain rates will be C = An/a as a material-specific constant: 
considered. In a further paper the predictions of the model 

C = (2n/45kT)[(n 2 + 2)2/no](0~s1 - O~s2 ) (3) will be evaluated experimentally. 

Almost all subsequent treatments of birefringence in 
viscoelastic fluids 5 7 culminate in a rederivation of the 
above expression for C. The essential idea here is to THE KINETIC O R I E N T A T I O N  M O D E L  FOR 
incorporate a mechanism that accounts for relaxation. POLYMER MELTS 
However, some of the assumptions introduced previously 
have been retained, i.e. it is supposed that: In the following, deformations taking place under 

(i) the internal energy is not affected by deformation; isochoric and isothermal conditions and at constant 
(ii) the orientating units are optically uniaxial; and strain rates will be considered. A polymer melt is taken 

(iii) the material possesses a temporary network to be a tangle of three-dimensional macromolecules, each 
structure, of which has a well defined configuration that is 

determined by chemical bond lengths and valence angles, 
and a certain flexibility arising from restricted rotation 

* To whom correspondence should be addressed. Current address: about the single bonds. It is assumed that the melt consists 
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15 (~) R' R' R' these two states: 

R" ~ ~ ~ R" G,o - G,a= - R T ln(p,o/p,a) (6) 

Between the states i a and io there is a transition state 
R" i*, which is characterized by a free-energy maximum: 

Gi* = Hi* - YSi* = Gi . . . .  (7) 

The rate constant for the process ia--,io, which is given 
by transition-state theory zz-x3, is: 

ki = (k T/h) exp[(Si. - Sia)/R - ( n i . - n i a ) / R  T]  (8a) 

and for the reverse process: 

fc, = (kT/h) exp[(Si. - S i o ) / R -  (Hi.  - n io) /R  T]  (8b) 

where k, h and R are the Boltzmann, Planck and gas 
constants, respectively, T is the absolute temperature, S 
the entropy and H the enthalpy of the state designated. 

60 ° 180 ° 300 ° ~ At equilibrium: 

I I a kip°d=kip°o (9) 
Figure 1 The change in Gibbs free energy during rotation about 
the central bond of R ' -H2C-CHz-R";  g, t and ~ designate the where pO d and p° o are the population densities in the 
stable conformations, gauche (~b = +60°), trans (4) = 180 °) and gauche undisturbed melt, and as: 
(q~= --60°) o o 

Pin = Pi - -  Pio 

we can write: 

p° o = pi/[1 + ([cJk,)] (10) 
chain length. If one such molecule contains n chain atoms, 
then there are ( n - l )  bonds along the chain and If a fully relaxed, isotropic melt is subjected to a simple 
( n -  3) bonds with the potential of generating different isochoric elongation, for which the principal components 
conformations (rotations about the two terminal bonds of the strain-rate tensor are: 
do not produce additional conformers). The change in ~l(t)=~oh(t) ~ii(t)=~m(t)=-0.5~,(t) (11) 
Gibbs free energy G(~b) during rotation about a C-C bond 
is usually described by a three-well curve as shown in where go is a constant and h(t) is the unit step function: 
Figure 1. If only potentials of this type hold, then there (0  for t < 0 
are 3 (n-3) conformers for an n-alkane, h(t)= ~l  (12) 

It should be emphasized that Figure 1 is based on the for t > 0 
assumption that the R' and R" groups both possess an then it is assumed that the free energy of the 
all-trans conformation that can be represented as conformational pair id and io varies as shown in 
t t t t t t t t t  . . . .  If this is not the case, i.e. if there are Figure 3. It should be noted that, in this figure, the angle of 
twists (e.g. R ' =  t tg t t t t t . . ,  and R" =~jtt t t t t . . . ) ,  then an rotation is considered as a reaction coordinate. 
asymmetrical potential, as shown in Figure 2, is valid. In this model a simple elongation, starting at t = 0, will 
As illustrated here, the two gauche states are no longer cause the following changes in the free energy in the ith 
energetically equivalent, i.e. G(+ 60 °) # G( - 60°). In the 
following treatment it will be assumed that those 
conformational changes that contribute substantially to 
the orientational behaviour of the melt take place at 15i( 1 ~i,) R' R' R' 
bonds having an asymmetric rotational potential (i.e. one 
conformer has a much higher energy than the other two). R " ~  ~ ~ R "  

A consideration of Figure 2 leads to the conclusion 
that, in this model, to first approximation, only the two R" 
states corresponding to Gi(180 °) and G~(-60 °) are 
populated, whereas Gi( + 60 °) is a quasi-empty state. It is 
further assumed that there are N conformational 
equilibria in the melt. As they concern different bonds, 
they will be treated as mutually independent subsystems. 
Under isothermal conditions the densities of the two g i. 
populated states, i d and io, which participate in the ith 
equilibrium, are thus: 

P~ = Pin + Pig = constant i = 1 . . . . .  N (4) 

where the states ia and io are each characterized by an 
appropriate rotational angle. The population density ! 
distribution in the ith subsystem: 60° 180° 300° -~Pi. 

I I I 

Pia~Pio (5) 
Figure 2 The change in Gibbs free energy during roation about the 

is determined by the difference in the free energies of ith bond of a macromolecule 
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I G {~ subsystem moves towards a new stationary state: 

t) L dpio/  d t  = ciPid --  clPio ( 1 9 a )  

where 

, , ~  ~/~\~X~X~x dp io /d t  = - -  dp id /d t  ( 1 9 b )  

/ Here dpio/dt is the growth rate in the population density 
"/  of state i o, and dpld/dt is the rate of decrease in the 

/ / /  population density of state i a. With the initial value 
y . ~  Pi°( t=O)=P°° ' in tegrat i°n°fequat i°n(19a)gives:  

[Pio(Ci at- Ci) --  pici]/[pOo(Ci at- Ci) --  PiCi] = exp[ - (ci + cl)t] 

id i* io (20) 
After rearrangement and the introduction of the 

REACTION COORDINATE "d(j, expression for p° o (equation (10)), the time dependence of 
the increase of the population density of state i o (the 
molar number of ia-~i o net transitions per unit volume) 

Figure  3 The  confo rmat iona l  change  in Gibbs  free energy a long  the can be obtained: ith react ion coordinate ,  ~ki; i d an d  i o are popu la ted  conformat ions ,  and  
i* is the t rans i t ion  state between them;  ( ) und is tu rbed ,  isotropic 
melt; ( . . . .  ) an iso t ropic  fluid after the appl ica t ion  of a s t ra in  rate, APio ( t )=p io ( t ) -P°o  

i o = cons t an t  = pi[-(1 q- C..JCi) - 1 _ (1 + / ~ - ] k i ) -  1] { 1 - -  exp[ - (ci + ci)t] } 

subsystem: (21) 
If the applied ~o is sufficiently small, i.e. if 

Gio(t > O) - Gio(t < O) = A t Gio(~l) < 0 (13) 

Gid(t > O) --  Gid(t < O) = A t Gin(El) > 0 (14) afio/R 7"<< 1 (22) 

Furthermore it is assumed that: then to a first approximation: 

At Gia(g;O = --  At G~o(~=) (15) (1 + gi/c~)- 1 _ (1 + f:i/k~)- 1 = 2ai~o/R 7[_2 + (kJfq) + (fq/k~)] 

and that the transition state i* does not alter its energy (23a) 
level during deformation: Using the relationship k jh=exp[- - (Gio- -G~d) /RT] ,  

A, Gi.(~0=0 (16) equation (23a) can be simplified to: 

where At G is the transient change of free energy due to (1-t-Ci/Ci)-l--(l + fq/ki) l= afio/RT[1 + cosh(Gio-Gin)/RT] 
deformation. Since the state i o is favoured by deformation, (23b) 
it will be termed the oriented conformer, and the state in The sum (c~ + 6~) can be written as: 
the disoriented conformer, of the ith subsystem. 

It should be mentioned that Eyring x4'15 has used a ci+6i=ki+fq+(aig.o/RT)(ki-fci)  (24a) 
similar procedure for deriving an expression for non- Thus, if k~ is approximately equal to k~, then: 
Newtonian steady-state shear viscosity 16. However, in 
contradistinction to the model presented here, Eyring's c~ + g~ ~ k~ +/~i (24b) 
concept was based on the idea that stress causes an The substitution of equations (23b) and (24b) into 
alteration of molecular translational jumping processes, equation (21) gives the following expression for Aped(t): 

THE STREAMING B I R E F R I N G E N C E  IN THE plai~o/RT 
LINEAR VISCOELASTIC RANGE OF Aped(t) = { 1 - e x p [ -  (k~ +/~)t]} 1 + cosh(AGi/RT) 
D E F O R M A T I O N  

The change of the population density distribution in the (25) 
ith subsystem due to an elongational f low field Here AGi designates the usual, t ime-independent 

In the range of deformation in which strains and strain difference in Gibbs free energy, Gio-  G~a. It should 
rates are very smal l - -  usually called the linear viscoelastic be noted that equation (25) describes a state of 
range - -  A~G~o(~) can be taken to be a linear function of thermodynamic non-equilibrium, which decays as soon 
~ = ioh(t): as the strain rate is switched off. If the end of deformation 

is at t' = 0, then the depopulation of the state i o is given by: 
AtGio(~o) = --  ai~o (17) Plo( t ) , - , ' = Apio(t = 0) e x p [ -  (k i + ki)t ] + p° o (26) 

a~ is a positive constant of proportionality with the 
This shows that at t '=  1/(k~+/~) the departure from dimension of action ( = energy x time). As the deformation 
equilibrium will have become 1/e times its initial value. 

proceeds, the rate constants (equations (8a) and (8b)) Evidently the constant (k~+/~) is the reciprocal value of 
become: 

a relaxation time for the ith subsystem: 
c i = k i exp(+ a i g o / R T  ) (18a) ki +/~i = l/z* (27) 

gi=f~iexp(-aigo/RT) (18b) An analogous result has been derived previously for 
and the population density distribution in the ith dielectric relaxation processes 17. Substituting equations 
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Table 1 The five arbitrary fluids strain-rate history (equation (11)) is thus: 

Fluid (a) (b) (c) (d) (e) An(t) = nDi(t) - nDn(t) = nm(t ) -  nDm(t ) 
N 

Zm (S) 0.01 0.1 1 10 100 = 3~o[n(n 2 + 2)2/9RTno] ~ piaiA~il 
gm (N m -2) 81 500 45 100 31 300 10000 757 
9~z~/~ gmZ~ 0.004 0.021 0.147 0.471 0.357 i=  1 

x [1 + cosh(AGi/RT)] - 1 [1 - exp( -  t/z*)] (36) 

For the same strain-rate history, the corresponding 
tensile stress is given by the theory of linear visco- 
elasticity 16'2° as: 

M 
(8a) and (8b) into equation (27) gives: tr(t)=3~ o ~ gmZm[1--exp(--t/Zm)] (37) 

z* = (h/k T) exp[(Gi. - G,o)/R T][1 + exp( -  AGi/R T)] - ~ m = 1 
(28) Here gm is the intensity and Zm is the time constant of 

If AGi/RT>>I, equation (28)can be approximated by: the mth relaxation process and summation is over M 
such processes. 

z* ~ (h / kT )exp[ (Gi . -G io ) /RT]  (29) A comparison of equations (36) and (37) shows that 
which is the usual expression for r for an activated process An(t) and a(t) are of exactly the same form. From 
in which G~.-Gio is the activation energy la. equations (36) and (37) the stress-optical coefficient 

An(t)/a(t) is: 

C(t) = c ~f~[1 - exp(-- t /z*)]/~ gmZm[1 - exp(-- t/Zm)] 

The stress-optical coefficient of a linear viseoelastie fluid (38) 

In deriving an expression for the transient birefringence Here p,a~Aair/(1 + cosh(AGJR T)] has been abbreviated as 
An(t)=ni(t)-nn(t)  that occurs upon simple elongation of f and 7r(n~+2)2/9RTno as c. For the sake of generality 
the type specified by equation (11), the polarizability of the conditions Z*#Zm andf~#gm have been set. Thus, C 
the states ia and io has to be considered. Without making is only a constant in two limiting cases and is otherwise 
any assumptions about the optical properties of the a function of time. In the first limiting case, as t ~  oo, the 
material, the mean contribution of an ia and an io steady-state value is given by: 
conformer to the polarizability in the principal direction 
I (i.e. the direction of the applied stretch) will be lim C( t )=c~ fJ~gmZm=C~s  (39) 
designated as: t - ~  

O~id I and ~io~ (30) Analogously, when t is much smaller than the shortest 
respectively. If A~a is the change in molar polarizability relaxation time, i.e. as t~0 ,  the short-time limit is: 

in the direction I: lim C(t) = c ~, ( f i /r*)/~ gm = C~. (40) 

A~II = N A (O~io I - -  O~idi) (31) t -*o 

then the complete change of volume polarizability by In order to illustrate the behaviour of the model, C(t) 
time t is given by: has been evaluated for five arbitrary fluids (a)-(e), all 

N having the same mechanical relaxation-time spectrum 
fli(t)-fli(t = 0 ) =  ~ Apio(t)AO~il (32) (Table 1). The relative weights of these processes are also 

~= ~ shown in Table 1. For convenience, the optical relaxation 
Here Ap~o(t) is the molar number of ia~io transitions times ~* have been set to be identical with the mechanical 
and summation is over N subsystems. Transforming ones: z*=zra=lO -3+m, m = l ,  2, 3, 4, 5. The constant c 
polarizability into refraction by means of the Lorentz- has been set to c = 0.001 mol J-1. The f~ factors of the 

five fluids (a)-(e) are shown in Table 2. It should be noted 
Lorenz formula ~9 yields: that ~f~ = 1 for each of these fluids and that thefi factors 

thus reflect the relative weight of the corresponding 
ni( t  ) - -  n](t = O) = (2n/9no)(n 2 + 2)  2 J i l l ( t )  - fll(t = 0)3 (33) optical process. 

Substituting equations (25), (27) and (32) into equation Figure 4 shows the time dependence of C(t) for each 
(33), and including the initial condition ni(t = O)= n o of the fluids. C(t) will obviously decrease with time when 
(which holds for any direction): the optical weighting factors of the fast processes are 

N greater than the corresponding stress weighting factors 
ni(t) = no + 2~o[g(no 2 + 2)2/9RTno] ~ piaiAo~ii 

i=1  

x [ 1 + cosh(AGJR T)] - ~ r 1 - exp( -  t/z*)] (34) Table 2 The f~ factors of the five fluids 

The difference n~(t)-n o, is the first component of Fluid  

the refractive-index deviator transformed to principal f~ 
directions. For a simple, isochoric elongation of a n  ( J s m ° l - ~ )  (a) (b) (c) (d) (e) 
originally isotropic fluid, the two remaining components L 0.01 0.005 0.004 0.002 0 
are given by: f2 0.02 0.01 0.02 0.02 0 

nDn( t )=nDui ( t )=  - -  ½ n o l ( t  ) ( 35 )  f3 0.3 0.3 0.158 0.158 0.14 
f4 0.47 0.47 0.5 0.5 0.5 

The transient birefringence An(t) induced by the f5 o.2 0.215 0.318 0.32 0.36 
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STRESS OPTICAL COEFFICIENT C 108 [Pa- 1] refraction) is known to be equal to 45 °. In  this case the 
principal strain rates (eigenvalues) are: 

1 , 0 0 0  

~, =½io i,, = - ½ i o  ~,,, = 0  (45) 

- ~  A simple shear, with respect to the principal axes of 
0,800 deformation, is thus a planar elongation. The strain rate 

in direction I is fully compensated by the strain rate in 
direction II, so that the strain rate in the third direction 

0,600 @ is zero (i.e. ~m=0). For the deformation defined in 
(~] equation (45) the principal components of the deviatoric 

0,400 @ ~ part of the refractive-index tensor are thus: 

nDl(t) = -- nDn(t) and nD.l(t) = 0 (46) 

02OO Applying equation (34) to the strain-rate history given 
@ by equation (45), the proposed model gives the following 

TIME t [s] principal indices of refraction: 
0 I I I I ~ N 

10 -6 10 - "  0,01 1 100 10" 106 nl(t)=no+~/o[n(n2+2)2/9RTno] 2 piaiA°~i 
Figure 4 The time dependence of the stress-optical coefficient for five i = 1 
linear viscoelastic fluids that differ only in respect of their optical × [1 +cosh(AGi/RT)]-111-exp(-t/z*)] (47) 
weighting factors f~ 

N 

nil(t ) = n o -- O)o[n(no 2 + 2)2/9R Tno] ~, piaiAo:i 
i = 1  

(curve a); when the opposite is the case (curve e), C(t) will 
increase with time. The strong optical weighting of the × [1 + cosh(AGi/RT)]-1[1-exp(-t/z*)] (48) 
process with z*= l s  (curves a and b) causes a local nnl(t)=n o (49) 
maximum in C(t) at t ~ z*. It is interesting to note that 
in all cases C(t) becomes time-independent at t ~ 2rmax,* Back-transforming to the axes of the original coordinate 
i.e. at t ~ 200 s. Furthermore it can be seen that the most system by Qv. n- Q gives: 

pronounced variationsin C(t) take place when t< l s .  Ii o n12 001 
This fact might be the reason why the time dependence 
of C(t) has been passed over in most earlier experimental n = 21 no (50) 
work. 0 n o 

The optical analogue of Trouton's rule where n12 = n21 =½[nl(t)--nn(t)]. From equations (36), 
For a simple shear process the shear-rate history is (47), (48) and (50) it can readily be seen that, in the linear 

given by: viscoelastic range of deformation, the optical analogue 
of Trouton's rule holds: 

'~l 2(t) = ~21(t) = ½~oh(t) (41) 3[n2 ,(t)/~o] = [An(t)/~o] (51) 
where io is a constant and h(t) is the unit step function 
defined in equation (12). If the response of a linear Were the stress-optical coefficient to be a constant, 
viscoelastic fluid exposed to this history is designated equation (51) could have been derived directly from 

Trouton's rule (equation (42)). It is therefore remarkable 
p2z(t), then Trouton's rule gives2X: that equation (51) is derived from a model that postulates 

3[p21(t)/~o] = [a(t)/~o] (42) a time-dependent stress-optical coefficient. 
It should be emphasized that all the relationships 

where p21(t)/~o is the linear viscoelastic shear viscosity, given above have been derived without making any 
#(t), and a(t)/go is the linear viscoelastic elongational 
viscosity, ~(t). For polymer melts the numerical value of assumptions as to the orientating units or to the structure 
the Trouton factor between/~(t) and ~/(t) has been found of the material, nor has it been necessary to assume 
to be 3 2 1 ' 2 2  that the internal energy remains unaffected during 

deformation. In order to calculate the optical response to a simple 
shear process, a transformation to principal strain-rate 
axes must be performed. This is accomplished by the 
operation: STREAMING BIREFRINGENCE IN THE NON- 

LINEAR RANGE OF DEFORMATION 
Q. ~i. QT (43) 

The change of the population density distribution in the 
Here ~ is the strain-rate tensor, Q is an orthogonal ith subsystem due to an enlongational flow field 
transformation tensor, given by: So far only small deformations, in which ~ ~)o, have 

[ cosz sinz ! ]  been considered. While ~ is an appropriate strain-rate 
measure for a fluid without memory (i.e. a Newtonian 

(2 = - sin Z cos g (44) liquid), ,~ is applicable to a material that never forgets its 
0 0 initial state (i.e. a rubber-like solid). Polymer melts are 

somewhere between these two limiting cases and, to 
and QT is its transpose. For the linear viscoelastic range account for this, equation (17) has been extended: 
of deformation the extinction angle Z (the angle between 
the direction of flow and the nearest principal axis of AtGio(~ o, t )=-ai~o(1 +m~ot) ~/m' (52) 
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2oooP and its integrated form23: 
Apo(t) [rnol/em 3] 

~ ~  t t t' 
.eX+;o, + )d )foCeXp(f ° 

~000 P b 
(59) 

both have to be computed numerically. From equations 
(58) and (59) and the expressions above for the 

c rate functions, it can be seen that the shift of the 
population density distribution in the ith subsystem due 

t Is] to deformation depends on five characteristic quantities: 
0 ~000 2000 the total population density P~=P~a+Pio, the two rate 

constants ki and k~, the action constant as and the 
Figure 5 The influence of the ratio k/k on Apo(t) of a fluid memory-loss number ml. 
with aiR T -  10 s, m = 10, pO + po o = 2000P mol c m -  3; the applied strain 
rate was ~ o = c o n s t a n t = 0 . 1 s - l :  (a) k = 0 . 0 0 1 0 s  -1, k = 0 . 0 0 4 0 s  -1, 
tj.f=32s;(b) k=O.OO16s-l,~=O.OO16s-l, ti,f=24s;(c) k=O.OO40s-1, S imulatedexper imentalresul ts formodel f lu idswi thN= l 
k=0.0010s -1, qnf=10s The fluids to be considered here contain only one 

subsystem and, since N = 1, the index i is omitted. Under 
the influence of a strain-rate history of the type defined 
in equation (11) or (55), the transient birefringence will 

Here a~ is the same constant as in equation (17) and m~ be given by the equations (31), (33) and (35): 
is a dimensionless parameter, which ranges from 0 to oo 
and thereby characterizes the solid-fluid dualism for a An(t)=AApo(t)  (60) 
given melt. This dualism becomes clear if we consider the Here A = (n/3no)(n 2 + 2)2A~1 and Apo(t ) = po( t ) -  pO is the 
two limiting values of equation (52): molar number of d ~ o  net transitions that will have 

occurred in a unit volume by time t. The subsequently 
lim AtGio(g;o, t) = - ai~o exp(~ot) = - ai),o(t)[~o (53a) given Apo versus t plots have been calculated by numerical 
m,-,o integration of equation (58). In these figures Apo is plotted 

and: in units of a constant scaling factor P. Thus each of these 
curves represents the transient birefringence An(t) of the 

lim AtGio(~ o, t) = - ai~ o (53b) corresponding fluid in units of the constant product PA. 
. . . .  Figures 5 and 6 demonstrate the effect of the ratio 

=Po/Pa on Apo(t) for a fluid with a / R T =  10s, m=  10 These equations show that mi~0  characterizes a material k/fc o o 
Pa + Po = 2000P mol cm-  3 for both kinds of elongation, with a perfect deformation memory, whereas m , ~  and o o 

characterizes one with a completely fading memory; m~ i.e. with eo = constant = 0.1 s-  1 and )~o = constant = 0.1 s- 1. 
will therefore be called the memory-loss number for the In all cases Apo(t) and An(t) move towards a steady state; 
ith subsystem, however, owing to the kinematical difference between 

In the following the response of the ith subsystem to go = constant and ,~o = constant, the shape of the curves 
simple elongation with ~o =constant and with 20 =constant for the two kinds of elongation are very different. With 
will be derived, whereby the strain rates are considered g0 = constant, the rate dApo/dt increases until, after 
to be large. For  the Hencky strain-rate history given by a comparatively short time, i t .  begins to decrease, 
equation (11), the rate constants can be obtained from approaching zero as t ~ .  With 2o=COnstant, dApo/dt 
equation (52): 

ci(t ) = k i exp[(ai~o/RT)(1 + mir, ot) 1/m' (54a) 100P 

A po(t) [mol/cm a] 
Ci(t) = ki exp[( -- ai~o/R T)(1 + mi~;ot ) llmi (54b) 

For  the stretch-rate history: 

21(t) = 2oh(t) ,~n(t) = ~,m(t) = [,~i(t)] - 1/2 (55) 

where: 5o P 

~,(t)l~o = 1/(t + 1/,~o) (56) 

the rate functions are: 

[ o, " t ' s '  
ci ( t )=kiexp  R T ( t + l / ~ o )  l + t + l / ~ , o J  _J ~ ~  

- I- --ai / mit "~l/m,-] o ' ' 
5,(t)=k, e x P [ R T ( t + l f l ,  o ) ~ l + ~ )  J (57b) ,000 z000 

Figure 6 The influence of the ratio k/f: on Apo(t ) of a fluid 
Since ci and 5~ a r e  n o w  functions of time for both with a/R T_ 10 s, m =  10, pO +pOo=2000 P mol cm-3;  the applied stretch 

s t r a i n - r a t e  histories, the change in the population density: rate was 20 = constant  = 0.1 s -  1: (a) k = 0.0010 s -  1, k = 0.0040 s -  1, 
tm~ x = 107 s, q.f = 248 s; (b) k = 0.0016 s -  1, f¢ = 0.0016 s -  a tm~. = 145 s, 

dPio/dt=ci( t)pi-[c~(t)+~i(t)]plo(t)  (58)  t i . r=348 s; (c) k =0.0040 s - 1 , / ¢ =  0.0010 s -1, tma~= 102 S, q . f =  238 S 
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l°°°P r , shows a max imum or inflection point, respectively, to 

t [ A po(t) [mol/cm 3] 
larger values. 

a c Figures 9, 10 and 11 show how the orientat ion Apo(t ) 
depends on the parameters  a and m for an elongation 
with 8 o = constant  -- 0.1 s -  1. Here m has been varied from 
10 - 6  t o  10  6, a/RThas  been given the values 10, 20 and 

500 P 

1000 P ~ 

Apo(t) [mol/cm 3 ] f r Y "  ~ "  

0 ~ 
0 25 50 

500 P 

Figure  7 The  effect of the  re laxat ion t ime z* on Apo(t) for a fluid with 
a/RT= 10 s, m = 10; s t ra in  rate ~0 = c o n s t a n t  =0.1 s -  t: (a) T* =0.0313 s, 
no  point  of inflection; (b) z * = 0 . 3 1 2 5 s ,  no  point  of inflection; 
(c) r * = 3 . 1 2 5 s ,  no point  of  inflection; (d) r * = 3 1 . 2 5 s ,  t i , f = l . 6 5 s ;  
(e) r * = 3 1 2 . 5  s, t inf=23.0 s / ~ . , , , , / ~ ~ ~ ~ . _ ~ . ~  

0 
1000 P 20 40 

l Apo(t) [ m°l /cm3]  F i g u r e 9  The  effect of m on Apo(t ) for a fluid with a/RT=lOs, 
z* = 312.5 s; s t ra in  rate ~o = cons t an t  = 0.1 s 1: (a) m = 10-  6, tinf = 17.8 s: 

/a  (b) m = 0 . 1 ,  4nf=  19.0s; (c) m = 0 . 5 ,  t inf=24.5 s; (d) m =  1.0, t i , f=31 .5  s; 
(e) m = 2.0, tin e = 41.0 s; (O m = 10, tln f = 23.1 S; (g) m = 106, no inflection 
point  

500 P 1000 p 

a 

~ b c 

£ 

0 ' ' 500 P 
50 100 

Figure  8 The  effect of z* on Apo(t) for a fluid with a/RT= 10 s, m = 10; 
s t retch rate , ~ o = c o n s t a n t = 0 . 1 s - t :  (a) z * = 0 . 0 3 1 3 s ,  tm,x=0.14S,  
t i , f=3 .5S;  (b) z * = 0 . 3 1 2 5 s ,  4 .ax=0.8S,  t inf=3.hs ;  (C) Z* = 3.1250 S, 
tmax=5.7S, t l n f = l l . h s ;  (d) r* = 31.250 s, tmax=29.0s ,  t inf= 59.8 s; d 
(e) z* =312.5  s, tm,x = 145 s, t ~ , f = 3 5 0 s  

0 
10 20 

decreases right f rom the beginning, becomes zero, further Figure 10 The  effect of  m on Apo(t) for a fluid with a/RT=2Os, 
r* = 312.5 s; s t rain rate go = cons t an t  = 0.1 s -  1: (a) m = 10-6,  qnf = 10.8 s; 

decreases (dApo/dt<O) until there occurs a point  of  (b) m=0.5, qnf=12.7S; (C) m=2.0, q,f=16.2s; (d) m=20, q,f=6.9s; 
inflection, and finally it increases to approach  zero as (e) m=10 -6, no inflection point  

t--,oo. In both  cases (i.e. with either go=COnstant or  
2o = constant), the general shape of  the Apoversus t curve 1000 P 
is independent  of  the value of  the ratio k/k. Therefore it ' / " ~ '  f - ~ - - ~ - ~ ~  . . . . .  
will be assumed that  / ~ 

Y .  0 0 Pd = Po = 1000P and k = k 

so that  (by means of  equat ion (27)): 

z* = (2k) - t  = (2/~)- 
500 P 

Figures 7 and 8 show how the orientation, Apo(t), i s  / / ] / / l  AP°(t) [m°l/cm3] 
influenced by the relaxation time z*. Here again it is 
assumed that a/RT= 10 s, m =  10 and 8 o =cons tan t  =0.1 s -  1 
or  2o=COns tan t=0 .1  s -z,  respectively. As can be seen, 
the smaller the value of  z* the larger is the initial rate, 
dApo/dt, and the shorter  is the time taken for the system ~ t Is] 
to reach its final steady state. It  is interesting to note that  0 
the curves of Figure 7, in which z*~< 3.1 s, do  not  exhibit s 
an inflection point. With  ~,o=COnstant, increasing the Figure  l l  The  effect of  m on Apo(t ) for a fluid with a/RT=6Os, 

r * =  312.5 s; s t ra in  rate i0 = cons tan t  = 0.1 s -1 :  (a) m = 10-6;  (b) m = 60; 
value of  r* shifts tma x and tinf, the times at which An(t) (c) m= lO 6 
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200 P . t ime requi red  to reach a po in t  of  inflection is shor tened  
AP°(t)  [m°l/cm3] as a or  m increases. F o r  e longa t ions  with ~,o=COnstant 

rate  dApo/dt i ndependen t  of the ac tua l  value the ini t ial  is 
of  m, jus t  as has  been the case with eo = constant .  

_ _  ~ a  The  effect of  the. app l ied  s t ra in  rate  (~o = constant) ,  and  
b - - - - - - - - - - - - - , , , , ~ ~  the s tretch ra te  ( 2 o = C O n s t a n t ) o n  the o r ien ta t ion  of  a 

fluid with a/RT=lOs,  m = 1 0  and  z * = 3 1 2 . 5 s  (i.e. 
~00p c ~ . _ , _  k = k = 0 . 0 0 1 6 s  -1) are shown in Figures 15 and  16. 

d Increas ing  the value of ei ther  ~o, or  ~,o increases the ini t ial  
s lope of  the curve and  shifts tma x and ti. f to smal ler  values. 

e ~ The change  of the ini t ial  s lope is consis tent  with the 
results  in an  earl ier  section. F o r  sufficiently small  t it 

t Is] follows from equat ion (36) that  An(t) = 3~oC ~, (fi/z*)t, where 
0 c = 7z(n 2 + 2)2/9R Tn o and  f / =  pea~A~il/[1 + cosh(AGJR T)]. 

200 ,00 To conc lude  this sect ion it should  be men t ioned  that  

Figure 12 The effect of m on Apo(t ) for a fluid with a/RT=lOs, a grea t  var ie ty  of  o r i en ta t iona l  behaviour ,  i.e. many  
z*=312.5s;stretchrate~o=constant=0.1s-l:(a)m=10-6, tmax=176s, different t ime courses of  An(t), can be mode l l ed  by  
ti,f=402s; (b) m=0.1, tm,.=175s, t~.f=396s; (c) m=l.0, tmax=162S, supe r impos ing  var ious  subsystems,  the con t r ibu t ion  of  
t i n f = 3 7 5  S; (d)  m = 1 0 ,  t m a x = 1 4 5 S ,  t i n f = 3 5 0 S ;  (e) m = 1 0 6 ,  t m a , =  1 4 0 S  , each being weighted differently. 
tl, f = 340 s 

S U M M A R Y  
t,oo p 

Apo(t) [mol/cm 3] A microscop ic  o r i en ta t ion  mode l  has been developed,  
l using the me thods  of chemical  kinetics,  to descr ibe the 

' ~ 1000 P . . . . . .  , 

200 P a ~  

500P 

t [S] 
0 200 ~.00 

Figure 13 The effect of m on Apo(t ) for a fluid with a/RT=2Os, 
r* = 312.5 s; stretch rate J-o =constant =0.1 s- 1: (a) rn = 10 -6,  tmax= 155 S, ~ t [S] 
ti,f=371 S; (b) m=0.1, tma.= 154 s, tl,f=368 s; (c) rn= 1.0, tm,~= 143 S, 0 ' ' , i i i 
tin f = 350 s; (d) m= 10, tm,x = 130 S, tinf= 325 S; (e) m =  10 6, tma x = 127 s, 200 ~0o 

t~.f=321 s Figure 14 The effect of m on Apo(t ) for a fluid with a/RT=6Os, 
z* = 312.5 s; stretch rate ~o = constant = 0.1 s- 1: (a) m = 10-6, t=.x = 18 s, 
t~.f=276s; (b) m=0.1, tm..=18S, tl.f=269S; (C) m=l.0, tm.~=20s, 

60 s, respectively,  and  the re laxa t ion  t ime has  been t aken  t~.f = 230 s; (d) m = 10, tma x = 23 s, t~, r = 180 s; (e) m = 106, tma x = 27 s, 
as z * = 3 1 2 . 5 s  (i.e. k = k = 0 . 0 0 1 6 s - a ) .  These figures ti.f=164s 
demons t r a t e  that ,  first, the ini t ial  ra te  dApo/dt depends  
only  on the ac t ion  cons t an t  a, and,  secondly,  the effect 
of  the memory - lo s s  n u m b e r  m decreases  as the value of  ~ooo P ] / / / . . . - ~  / / ~ .  _ _ - - - -  
a increases.  At  a/RT= 10 s (Figure 9) the course of  the 
t rans ient  birefr ingence An(t) is much  more  suscept ible  to 
the ac tua l  value of m than  at  a/RT=60s  (Figure 11). 
W h e n  a is large and  m is small ,  the birefr ingence increases 
max ima l ly  and  reaches sa tu ra t ion  (at 1000PA) after a b c 

m i n i m u m  de fo rma t ion  t ime and,  fur thermore ,  there  is no 
po in t  of  inflection if a/RT= 60 s or  if m = 106. s00~ 

Figures 12, 13 and  14, in which ,~o = c o n s t a n t  =0 .1  s - 1  
show the coun te rpa r t s  to the preceding  examples .  
c o m p a r i s o n  be tween the two sets of  figures shows tha t  
the influence of  the pa rame te r s  a and  m is much  more  
p ronounced ,  for e longa t ions  with ~o = cons tan t  than  for 
those  with 20 = c o n s t a n t .  In  all of  the curves in Figures o 
12-14 the value of  Apo(tm,~) increases as a/RTincreases o lO zo 
or  as m decreases.  F o r  ei ther  a/RT= 10 s (Figure 12) or  Figure 15 The influence of the magnitude of the strain rate ~o on 
a/RT=20s  (Figure 13) the m a x i m u m  shifts to shor te r  Ap°(t) f°raf luidwitha/RT=lOs'm=lOandz*=312"5s:(a)k°=O'6s-~'  

times as m increases; however, for a/RT=60s(Figure14), t~,e=0.3s; (b) ~o=0.5s -1, q.f=0.8s; (c) ~o=0.4s -~, t~,f=l.9s; 
(d) eo = 0.2 s- 1, t~,f = 10.7 s; (e) eo = 0.1 s- 1 ti,~ = 23.0 s; (f) eo = 0.05 s- 1, 

increas ing m shifts the m a x i m u m  to longer  times. The  t ~ . f = 2 9 . 4 s  
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BooP polymer melts under small strain and small strain rate, 
I ~  then it must be concluded that the so-called stress-optical 

rule, An/a=constant ,  is not valid even in the linear 
a viscoelastic range of deformation. The ratio C(t) is 

predicted to have a constant value, Cin, within short 
deformation times but a different constant value, Css, as 

• ~ - t [s] t - - *oC.  

,oop 3. In addition to the well known mechanical relaxation- 
~ time spectrum {gm' rm} there is a stress-°ptical relaxati°n- 

c time spectrum {(¢fi/z*), r*}. 
f 4. In the linear viscoelastic range of deformation, the 

d ~ optical analogue of Trouton's rule holds, while the 
e - -  stress-optical rule is invalid. 
f ] 5. In the non-linear range of deformation An(t) is 0 i i i i 

200 ~oo predicted to depend strongly on the applied deformation 
Figure 16 The influence of the magnitude of the stretch rate 20 on history. For two elongations, carried out with i = constant 
Apo(t) for a fluid with a/RT= 10 s; m = 10, z*= 312.5 s: (a) .J-.0 =0.6 s 1, and )~ = constant, respectively, i and ,~ both of the same 
tmax=12s, tinf=84s;(b) 2o=O.5s-l, tm.x=30s, ti,f=130s;(c) 2o=O.4s 1, magnitude, the corresponding An(t) curves have a 
tjnax=53S, ti.f=182S; (d) 20=0.2.s -1, tmax=108S, ti.f=286S; (e) common initial part of short duration (in the linear 
2 0 = 0.1 S 1, tmax = |45 S, tin f = 348 s; (t)20 = 0.05 s- 1, tm, x = 181 S, q,f = 410 S viscoelastic range) and then they diverge to different 

steady state values. For the elongation with i = constant, 
rheo-optical behaviour of polymer melts. The model is An(t) increases steadily, for the one with 2=constant ,  
based on the assumption that the macromolecules An(t) passes a maximum and then decreases to a final 
in a polymer melt are capable of continuously changing value which is much smaller than Anma x if )~ is big. 
their conformation. It is further assumed that those 
conformat ional  changes which contr ibute to the 
orientational behaviour of the melt take place at bonds A C K N O W L E D G E M E N T S  
that have an asymmetrical rotational potential that has 
only two free-energy minima. Only the conformers that The authors wish to express their gratitude to Professor 
correspond to these minima are considered to be Meissner, Dr Garbella and Dr Vansco for valuable 
populated, while all other conformational states are discussions, and to the Swiss National Foundation for 
assumed to be quasi-empty. The pair of conformers Scientific Research (Grant No. 2.046-0.86) for financial 
generated by rotation at a specific bond is treated as an support. 
independent subsystem. 

In the undeformed, thermally equilibrated melt, the 
relative population densities of the two conformers of a 
subsystem depend on the Gibbs free energies of the LIST OF SYMBOLS 
corresponding states and on the temperature. In the al (Jsmo1-1) action constant of the ith 
presence of an elongational flow field, the Gibbs free subsystem 
energy of one conformer decreases by a specific amount, A (cm 3 mol-  1) constant 
while that of the other increases by the same amount. In c (mol J -  1) constant 
the range of small deformations the shift of the population ci (s- 1) rate constant for orientation 
density distribution in the ith subsystem produced in this in the ith subsystem 
way depends on the action constant ai, and on the applied 6i (s- 1) rate constant for disorien- 
strain rate. In the non-linear range of deformation, an tationin the ith subsystem 
additional constant ml, the memory-loss number, is ci(t) (s -1) rate function for orientation 
important. The transition from linear to non-linear in the ith subsystem 
behaviour is governed by the magnitude of the strain gi(t) (s- l)  rate function for disorien- 
rate, the duration of the deformation and the value of tat ionin the ith subsystem 
the constant ml. C (Pa-1) stress-optical coefficient 

Each subsystem is characterized by: a totalpopulat ion C~n, C~s (Pa-  1) linear viscoelastic 
density Pi = Pig q- Pio, tWO rate constants k~ and ki, an action expression for C at short 
constant a i and, in the non-linear viscoelastic range, a times or for t--*oo, 
memory-loss number m~. respectively 

The main predictions of the model can be summarized f~ (J s mol -  1) weighting factor for tran- 
as follows: sient birefringence under 

1. The time dependence of the birefringence in the linear linear viscoelastic condition 
viscoelastic range of deformation can be represented (for G (J mol -  1) Gibbs free energy 
simple elongation as well as for simple shear) by an AG~ (Jmo1-1) molar difference in Gibbs 
expression that is analogous to the corresponding free energy between the 
stress expression known from the theory of linear oriented andthedisoriented 
viscoelasticity. However, in the present case, summation conformers of the ith sub- 
is not over M spring-dashpot elements but over N system 
orientational processes. AtGio(i0) (J mol -  1) temporal change of Gibbs 

2. If the theory of linear viscoelasticity is accepted as free energy in the ith sub- 
an adequate description of the rheological behaviour of system due to deformation 
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gm (Pa) weighting factor for stress polarizability in the princi- 
under linear viscoelastic pal direction I 
conditions ~sl, ~s2 (c m3) principal polarizabilities of 

h (J s) Planck constant a segment 
h(t) step function fl~ volume polarizability in 
H (J mol-x)  enthalpy principal direction I 
k (J K -  1) Boltzmann constant ~o (s- 1) constant shear rate 
ki (s- 1) rate constant for orientation ~o (s- 1) constant derivative of the 

in the undisturbed ith sub- Hencky strain 
system ei' e, '  em (s-1) principal components of 

/~i (s-1) rate constant for disorien- the Hencky strain-rate 
ration in the undisturbed tensor 
ith subsystem ~/ (Pa s) linear viscoelastic shear 

L, Lo (m) sample length at time t and viscosity 
t = 0, respectively ~-o (s-1) constant stretch rate 

mi memory-loss number of the 2f 2 n' 2 m (s-x) principal components of 
ith subsystem the stretch-rate tensor 

no refractive index of unde- /~ (Pa s) linear viscoelastic elonga- 
formed material tional viscosity 

An(t) transient birefringence tr (Pa) tensile stress 
exhibited upon simple z (s) mechanical relaxation time 
elongation z* (s) optical relaxation time 

n I refractive index in the prin- g (deg) extinction angle 
cipal direction I 

riD], nDn , nDm principal components of 
the deviator of the refraction 
tensor 

N (cm-3) density of chains between 

crosslinks REFERENCES 
N A (mol-  1) Avogadro number 
Pid (molcm -3) population densityfordis- 1 Janeschitz-Kriegl, H. 'Polymer Melt Rheology and Flow 

oriented conformer of the Birefringence', Springer-Verlag, Berlin, 1983 
ith subsystem 2 White, J. L. and Spruiell, J. E. Polym. Eng. Sci. 1983, 23, 247 

3 Kuhn, W. and Griin, F. Kolloid-Z. 1942, 101, 248 
Pio (mol c m-  3) population density for 4 Treloar, L. R. G. 'The Physics of Rubber Elasticity', Clarendon 

oriented conformer of the Press, Oxford, 1975 
ith subsystem 5 Lodge, A. S. Kolloid-Z. 1960, 171, 46 

p° o (mol cm-  3) P~o in the undeformed melt 6 Read, B. E. Polymer 1962, 3, 143 
7 Janeschitz-Kriegl, H. Adv. Polym. Sci. 1969, 6, 170 

P scaling factor 8 Read, B. E. Polymer 1964, 5, 1 
Q, Qx orthogonal transformation 9 Coleman, B. D., Dill, E. H. and Toupin, R. A. Arch. Rat. Mech. 

tensor and its transpose, Anal. 1970, 39, 358 
respectively 10 Dill, E. H. J. Polym. Sci. (C) Polym. Syrup. 1964, 5, 67 

11 Moore, W. J. 'Physical Chemistry', 5th Edn., Longman, London, R (J K -  1 mol -  1) gas constant 1972 
S (J K -  1 mol -  1) entropy 12 Laidler, K. J. 'Chemical Kinetics', 2nd Edn., McGraw-Hill, New 
t, t', t" (S) time York, 1965 
tin f (S) time corresponding to a 13 Glasstone, S., Laidler, K. and Eyring, H. 'The Theory of Rate 

Processes', McGraw-Hill, New York, 1941 
point of inflection in An(t) 14 Eyring, H. J. Chem. Phys. 1936, 4, 283 

tma x (S) time corresponding to a 15 Ree, T. and Eyring, H. 'Rheology' (ed. F. R. Eirich), Academic 
maximum in An(t) Press, New York, 1958, Vol. II 

T (K) absolute temperature 16 Bird, R. B., Armstrong, R. C. and Hassager, O. 'Dynamics of 
Ao~iI (cm 3 mol -  1) mean change of polariza- Polymeric Liquids', Vol. I, 'Fluid Mechanics', Wiley, New York, 

1977 
bility in the principal direc- 17 Frrhlich, H. 'Theory of Dielectrics', Clarendon Press, Oxford, 
tion I due to N A orienta- 1958 
tional transitions in the ith 18 McCrum, N. G., Buckley, C. P. and Bucknall, C. B. 'Principles 
subsystem of Polymer Engineering', Oxford University Press, Oxford, 1988 

~id~ (cm3) mean contribution of a 19 Born, M. and Wolf, E. 'Principles of Optics', 6th Edn., Pergamon 
Press, Oxford, 1983 

disoriented conformer of 20 Stavermann, A. J. and Schwarzl, F. 'Die Physik der 
the ith subsystem to the Hochpolymeren' (ed. H. A. Stuart), Springer-Verlag, Berlin, 1956, 
polarizability in the princi- Vol. IV 
pal direction I 21 Petrie, C. J. S. 'Elongational Flows', Pitman, London, 1979 

22 Meissner, J. Rheol. Acta 1971, 10, 230; J. Appl. Polym. Sci. 1972, 
Ctio I (cm 3) mean contribution of an 16, 2877 

oriented conformer of the 23 Margenau, H. and Murphy, G. M. 'The Mathematics of Physics 
ith subsystem to the and Chemistry', 2nd Edn., Van Nostrand, Princeton, NJ, 1956 

2584 POLYMER, 1993, Volume 34, Number 12 


